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We identify the meson trajectories in the gauge theories of quarks and gluons, within the framework of
perturbation-theory models, by a set of Feynman diagrams different from that for the Pomeron. The method
has several attractive qualitative features: it produces a degenerate set of trajectories p, 4,, P, etc. with the
“bare” P’ trajectory separated from and having a lower intercept compared to the Pomeron. We discuss the
implications of a logarithm-squared contribution to the process of Reggeization.

Perturbation-theory models, where Feynman
diagrams are summed in the high-energy limit,
have provided valuable insight into Regge theory.!
Much attention recently has been focused on ob-
taining the Pomeron trajectory in the non-Abelian
gauge theory of quarks and gluons, quantum chro-
modynamics (QCD). The appropriate diagrams
are given in Fig. 1, whose sum in the leading-
logarithm approximation is presumed to generate
the Pomeron trajectory in the # channel. The re-
sult up to the eighth order is consistent with a
moving Regge pole.>3*

However, this method may suffer from two com-
plications. The first one is associated with the
fact that the Pomeron is generally thought to be a
reflection (through unitarity) of scattering in the
inelastic channels (e.g., shadow effects) and not
a bound state of gg. Thus it is quite possible that
the Pomeron singularity (be it a pole or a cut) ob-
tained in g+q—q+q (or g+g—q +¢q) will not be the
same as in hadron+ hadron —hadron+ hadron®; the
complicated two- and three-body interquark forces
that make up a (color-singlet) hadron could very
possibly make a difference. The second complica-
tion is that of infrared divergence in the limit of
A-0, where A is the gluon mass.

In the following we outline a method for obtaining
the non-Pomeron meson trajectories within the
framework of perturbation-theory models. By
non-Pomeron trajectories we mean those which
correspond to a bound state of the gq system, e.g.,
the I=1 states of p, A,, etc., or the I=0 states w,
f, etc, and so on. The method does not suffer
from the two complications mentioned above. It
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FIG. 1. Feynman diagrams for the Pomeron trajec-
tory.

has the attractive qualitative feature that the
bound-state trajectories are separated from the
Pomeron and it has, as a natural consequence of
the gluons being I -spin singlets, the degeneracy
between the I=1 and I=0 trajectories. However,
as we shall see later, there is a new technical dif-
ficulty in the process of Reggeization that prevents
us from obtaining an explicit form of the meson
trajectories. We discuss several possibilities that
may overcome this difficulty.

Consider the I=1 mesons, e.g., p, 4,, etc.
which are the bound states of gq. Their Regge tra-
jectory canbe obtained through the quark-antiquark
process @+ @ — I + I by summing the diagrams
in Fig. 2 which are different from those in Fig. 1.
We note that diagrams in Fig. 1 do not contribute
to ®+® -9+, which has I,=1 in the # channel
because the gluons have I=0. The diagrams in
Fig. 2 are of lower order in s, for each order of
the quark-gluon coupling, than the Pomeron-pro-
ducing diagrams in Fig. 1.

If we keep the same diagrams as in Fig. 2 but
look at ®+® —®+@ we would get the (non-Pom-
eron) I,=0 trajectories which will be degenerate
with the I, =1 trajectory because gluons couple the
same way to ®® and NN. These I,=0 trajectories
can be identified with the “bare” w, f, etc. tra-
jectories whose intercept will automatically be
smaller than that of the trajectory given by Fig. 1;
the lowest-order term in the former behaves like
s™! while for the latter it behaves like s**.

The above procedure for the I,=1 trajectory,
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FIG. 2. Feynman diagrams for the leading I,=1 meson
trajectory.
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and its degenerate I, =0 trajectories, does not
suffer from the possible complications present in
the Pomeron calculation. Firstly, because the
mesons are, indeed, bound states of the quark-
antiquark system, the trajectory in g+g—qg+q
will be the same as in hadron+ hadron-hadron
+hadron; only the residue functions will change.
Secondly, there is no infrared divergence in the
amplitude corresponding to Fig. 2 obtained in the
high-energy limit.

In other words, by writing the contributions from
Fig. 1 and Fig. 2 separately, we have the inter-
esting consequence of generating two different
“bare” trajectories P and P’ (for the I,=0 case).
The “bare” P’ trajectory is degenerate with p, A,.
We note that the “physical” P’ trajectory will be
shifted by diagrams such as Fig. 3 (they can be
separated into two parts by a f-channel inter-
mediate state containing only gluon lines), which
only contribute to I,=0 processes, or by in-
cluding the lower-order contributions of Fig. 1.

In what follows, we illustrate the questions in-
volved by first considering the Abelian case and
then come back to discuss possible ramifications
in the non-Abelian case. Using the standard pre-
scription for calcuating the diagrams we obtain
the following results. 234

Figure 2(a) is the pole term for the scattering
a(p)+7(py) ~q (p)+7(p3):

- r — 7
g? (P17, u(pl)z(pz)nv(pz) , 1)
where g is the quark-gluon coupling and the gluon
is assumed to have zero mass. Leaving out the
spinor factors, the asymptotic behavior of this
term is
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Diagram 2(b), after introducing Feynman pa-
rameters, is found to be

g4f ﬁ1 da ;6 (1 - Z a,.>f i {o(pvly-a' =7 R+r)+mly,u(p,)}

X{u(pvulv g’ =y R =) +m]y,o(p)}/ [ ¢ 2+ a,a,5 + a,a,t — (@, +a,Pm?]t

where "= %(Pz "pl); Y= %(Pl +p2); ¥3= %(pll"’pz, )’
and R=-q,7,+ a7, + (&, — a,)r,. The contribution
of Fig. 2(c) is obtained from Fig. 2(b) by t ~—u
and s fixed.

To obtain the asymptotic behavior of the above
expression we note that there are two types of
contributions, one coming from the product of two
Y- q' and the other from the remaining products
(the crossed terms give a vanishing contribution
after integration). Calculating the product not
involving y ¢’ first, we find its asymptotic be-
havior, again leaving out the spinor factors, to be
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where K(¢) is a function of ¢ given by
K(t)=f da,do,d5(1 - o, —a,)

1
a,a,ltl=(a,+a,)?m?’

(5)

FIG. 3. Example of a diagram that breaks the de-
generacy between the “bare” I,=0 and I,=1 trajectories.
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The term involving a product of two v - ¢’ in (3)
gives, in contrast to (4), a In®s term,

giCin’s (6)

where C=(1/1672)[2(p!)y,u(p,Ya(p,)y,v(p,)] apart
from the same spinor-field factor as (1) is in-
dependent of £.° Such a term cannot be canceled
by any other fourth-order diagrams.

The presence of the log-squared term in (6)
above is of crucial significance. The same log-
squared term appears in QED in e”e* - pu~u* near
the forward direction (or e"u~ - e~u" near the back-
ward direction) as pointed out some time ago by
Gorschkov, Gribov, Lipatov, and Frolov (GGLF).%"
Their diagrams are identical to our Fig. 2 for
@ +® - N +N in the Abelian case.

Since In®s dominates over lns asymptotically,
the series we have to consider will have the form

g
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+

8¢ Infs+ ¢ . (7)
s
The presence of the log-squared term and its
powers creates problems for Reggeization. The
sum cannot add to a Regge pole which requires a
power series in single log.®
In QED, for e”e* - u "~ u*, it was found by GGLF
that the sum of the type (7) gave rise to a fixed
cut in the j plane of the # channel; the partial-
wave amplitude was given by%?
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In QCD the nature of the fixed j-plane singularity
can be more complicated, since the ladder dia-
grams (and the associated bremsstrahlung dia-
grams) are not necessarily dominant in the high-
energy limit as in QED.

It is perhaps surprising that in contrast to the
trajectory in the Pomeron channel which seems to
Reggeize at least to the eighth order, the meson
channels have the log-squared complication in the
fourth order. All the experimental evidence points
to mesons being simple poles. That is, mesons,
as bound states of g7, should be moving j-plane
singularities. On the other hand, a Pomeron sin-
gularity as indicated by experiments and by Reg-
geon field theories may well be more complicated.
It is conceivable that the mechanism which pro-
duces confinement of quarks may also alter the
log-squared contribution. One must then go to
the non-Abelian case of QCD where confinement
is presumably a natural outcome. In this con-
text we note that because the log-squared con-

tribution in (3) comes from the region ¢{2>m?
(where ¢! is perpendicular to p,,p{), one can con-
sider the case of infinite bare quark mass (m) as
a reflection of confinement and, therefore, pos-
sibly of a moving Regge pole. However, it is dif-
ficult to implement 7~ < in an unambiguous way
within the summation technique.

We also note that asymptotic freedom may soften
the asymptotic behavior as indicated in a recent
extension by Polkinghorne® of earlier!® works in-
vestigating the ¢* theory in six dimensions. How-
ever, based on these investigations, it is likely
that some fixed singularity will remain and the
moving pole can only be isolated from lower-
order contributions.

In conclusion, our method of identifying the
meson trajectories by a set of Feynman diagrams
different from that for the Pomeron does not suf-
fer from the problems of infrared divergence,
etc., inherent in the Pomeron calculation and has
several attractive qualitative features, namely,
it produces a degenerate set of trajectories p, 4,,
P/, etc., with the “bare” P’ trajectory separated
from and having a lower intercept compared to the
Pomeron. It would be interesting if any of the
above-mentioned mechanisms implicit in QCD can
remove the log-squared complication that will al-
low us to obtain an explicit form for the mesons
as moving Regge poles.

*Work supported in part by the National Science Founda-
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