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Reggeization of meson trajectories in quark-gluon theories~
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%'e identify the meson trajectories in the gauge theories of quarks and gluons, within the framework of
perturbation-theory models, by a set of Feynman diagrams different from that for the Porneron. The method

has several attractive qualitative features: it produces a degenerate set of trajectories p, A, , P, etc, with the
"bare" P trajectory separated from and having a lower intercept compared to the Pomeron. %'e discuss the

implications of a logarithm-squared contribution to the process of Reggeization.

Perturbation-theory models, where Feynman
diagrams are summed in the high-energy limit,
have provided valuable insight into Regge theory. '
Much attention recently has been focused on ob-
taining the Pomeron trajectory in the non-Abelian
gauge theory of quarks and gluons, quantum chro-
modynamics (QCD). The appropriate diagrams
are given in Fig. 1, whose sum in the leading-
logarithm approximation is presumed to generate
the Pomeron trajectory in the t channel. The re-
sult up to the eighth order is consistent with a
moving Regge pole."4

However, this method may suffer from two com-
plications. The first one is associated with the
fact that the Pomeron is generally thought to be a
reflection (through unitarity) of scattering in the
inelastic channels (e;g. , shadow effects) and not
a bound state of qq. Thus it is quite possible that
the Pomeron singularity (be it a pole or a cut) ob-
tained in q+q-q+q (or q+q-q+q) will not be the
same as in hadron+ hadron- hadron+ hadron'; the
complicated two- and three-body interquark forces
that make up a (color-singlet) hadron could very
possibly make a difference. The second complica-
tion is that of infrared divergence in the limit of
X-0, where X is the gluon mass.

In the following we outline a method for obtaining
the non-Pomeron meson trajectories within the
framework of perturbation-theory models. By
non-Pomeron trajectories we mean those which
correspond to a bound state of the qq system, e.g.,
the I= 1 states of p, A„etc., or the I= 0 states ~,
f, etc, and so on. The method does not suffer
from the two complications mentioned above. It

has the attractive qualitative feature that the
bound-state trajectories are separated from the
Pomeron and it has, as a natural consequence of
the gluons being I -spin singlets, the degeneracy
between the I= 1 and I= 0 trajectories. However,
as we shall see later, there is a new technical dif-
ficulty in the process of Reggeization that prevents
us from obtaining an explicit form of the meson
tra]ectorles. We discuss several posslbllities that
may overcome this difficulty.

Consider the I= 1 mesons, e.g. , p, 4, , etc.
which are the bound states of qq. Their Regge tra-
jectory can be obtained through the quark-antiquark
process 6'+ O'- X+X by summing the diagrams
in Fig. 2 which are different from those in Fig. 1.
We note that diagrams in Fig. 1 do not contribute
to 6'+O'-%+X, which has I, =1 in the t channel
because the gluons have I=0. The diagrams in
Fig. 2 are of lower order in s, for each order of
the quark-gluon coupling, than the Pomeron-pro-
ducing diagrams in Fig. 1.

If we keep the same diagrams as in Fig. 2 but
look at (P+ e-6'+0' we would get the (non-Pom-
eron) I, = 0 trajectories which will be degenerate
with the I,=1 trajectory because gluons couple the
same way to 6'{P and XX. These I, =0 trajectories
can be identified with the "bare" &u, f, etc. tra-
jectories whose intercept will automatically be
smaller than that of the trajectory given by Fig. 1;
the lowest-order term in the former behaves like
s ' while for the latter it behaves like s".

The above procedure for the I, =1 trajectory,
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FIG. 1. Feynman diagrams for the Pomeron trajec-
tory.

FIG. 2. Feynman diagrams for the leading I&=1 meson
tl ajectory'.
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and its degenerate I, =0 trajectories, does not
suffer from the possible complications present in
the Pomeron calculation. Firstly, because the
mesons are, indeed, bound states of the quark-
antiquark system, the trajectory in q+ q -q+ q
will be the same as in hadron+ hadron- hadron
+ hadron; only the residue functions will change.
Secondly, there is no infrared divergence in the
amplitude corresponding to Fig. 2 obtained in the
high-energy limit.

In other words, by writing the contributions from
Fig. 1 and Fig. 2 separately, we have the inter-
esting consequence of generating two different
"bare" trajectories P and P' (for the f, =0 case).
The "bare" I" trajectory is degenerate with p, A2
We note that the "physical" I" trajectory will be
shifted by diagrams such as Fig. 3 (they can be
separated into two parts by a t-channel inter-
mediate state containing only gluon lines), which
only contribute to I, =O processes, or by in-
cluding the lower-order contributions of Fig. 1.

In what follows, we illustrate the questions in-
volved by first considering the Abelian case and
then come back to discuss possible ramifications
in the non-Abelian case. Using the standard pre-
scription for calcuating the diagrams we obtain
the following results. "4

Figure 2(a) is the pole term for the scattering
q(P, )+ q(P, ) -q (p.)+ q(p,'):

.~(p,')y, u(p, )u(p. )y.~(P,')

where g is the quark-gluon coupling and the gluon
is assumed to have zero mass. Leaving out the
spinor factors, the asymptotic behavior of this
term is

Diagram 2(b), after introducing Feynman pa-
rameters, is found to be

g dQi5 1 — Qi d q 5 p~ pp p ~ q —p' R+t~ +m f~Q pg
i =& i

x (u(p, )y, [y ~ q' —y ~ (ft —r, ) + m ]y„t)(p,')]/ [q" + u, n, s+ o(,c(,t —(o.', + o(,)'m']',

(3)

where r, = —,'(p, —p, ), r, = —,'(p, +p, ), r, = —,'(p,'+p,' ),
and 8 = -o!,r2+ o(3y2+ (o(2 —o(4)r, The c.ontribution
of Fig. 2(c) is obtained from Fig. 2(b) by t —u
and s fixed.

To obtain the asymptotic behavior of the above
expression we note that there are two types of
contributions, one coming from the product of two

I
y ~ q and the other from the remaining products
(the crossed terms give a vanishing contribution
after integration). Calculating the product not
involving y q first, we find its asymptotic be-
havior, again leaving out the spinor factors, to be

g'K(t) —lns,
S

where K(t) is a function of t given by

1
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FIG. 3. Example of a diagram that breaks the de-
generacy behveen the "bare" I&-—0 and I&= 1 trajectories.

The term involving a product of two y ~ q' in (3)
gives, in contrast to (4), a ln's term,

g4C-,' ln2s, (6)

where C = (1/16w')[v(p, ')y, u(p, )u(p, )y~v(p, )] apart
from the same spinor-field factor as (1) is in-
dependent of t.' Such a term cannot be canceled
by any other fourth-order diagrams.

The presence of the log-squared term in (6)
above is of crucial significance. The same log-
squared term appears in QED in e e' —p, p, ' near
the forward direction (or e t(, - e t(, near the back-
ward direction) as pointed out some time ago by
Gorschkov, Gribov, Lipatov, and Frolov (GGLF)."
Their diagrams are identical to our Fig. 2 for
5'+O' —X + Z in the Abelian case.

Since ln2s dominates over lns asymptotically,
the series we have to consider will have the form

2 4C—+ lns+' '
S 8

The presence of the log-squared term and its
powers creates problems for Reggeization. The
sum cannot add to a Regge pole which requires a
power series 1n 81.ngle log.

In @ED, for e e' —p, p.', it was found by GQLF
that the sum of the type (7) gave rise to a fixed
cut in the j plane of the t channel; the partial-
wave amplitude was given by"
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1j) j + (j2 p)z g2

In @CD the nature of the fixed j-plane singularity
can be more complicated, since the ladder dia.-
grams (and the associated bremsstrahlung dia-
grams) are not necessarily dominant in the high-
energy limit as in @ED.

It is perhaps surprising that in contrast to the
trajectory in the Pomeron channel which seems to
Reggeize at lea, st to the eighth order, the meson
channels have the log-squared complication in the
fourth order. All the experimental evidence points
to mesons being simple poles. That is, mesons,
as bound states of qq, should be moving j-plane
singularities. Gn the other hand, a Pomeron sin-
gularity as indicated by experiments and by Reg-
geon field theories may well be more complicated.
It is conceivable that the mechanism which pro-
duces confinement of quarks may also alter the
log-squared contribution. One must then go to
the non-Abelian case of @CD where confinement
is presumably a natural outcome. In this con-
text we note that because the log-squared con-

tribution in (3) comes from the region q,"»m'
(where q,' is perpendicular to p„p,'), one can con-
sider the case of infinite bare quark mass (m) as
a. reflection of confinement and, therefore, pos-
sibly of a moving Regge pole. However, it is dif-
ficult to implement n~- ~ in an unambiguous way
within the summation technique.

%e also note that asymptotic freedom may soften
the asymptotic behavior as indicated in a recent
extension by Polkinghorneo of earlier'o works in-
vestigating the Q theory in six dimensions. How-
ever, based on these investigations, it is likely
that some fixed singularity will remain and the
moving pole can only be isolated from lower-
order contributions.

In conclusion, our method of identifying the
meson trajectories by a set of Feynman diagrams
different from that for the Pomeron does not suf-
fer from the problems of infrared divergence,
etc. , inherent in the Pomeron calculation and has
several attractive qualitative features, namely,
it produces a degenerate set of trajectories p, A„
P', etc., with the "bare" P' trajectory separated
from and having a lower intercept compared to the
Pomeron. It would be interesting if any of the
above-mentioned mechanisms implicit in QQD can
remove the log-squared complication that will al-
low us to obtain an explicit form for the mesons
as moving Regge poles.
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